

CO₂ Emissions from Fuel Combustion: Important guidance from IRES

Leonardo Rocha Souza

SEMINAR ON

Mainstreaming Energy Sustainable Development Goals (SDGs), Targets and Indicators into Statistical Programmes in Select African Countries

27-29 June 2016 Addis Ababa, Ethiopia

The Concept of Production

- 5.10: Primary production is the capture or extraction of fuels or energy... within the national territory in a form suitable for use. Inert matter removed from the extracted fuels and quantities reinjected, flared or vented are not included.
 - Data for oil and gas production should be NET of reinjected, flared and vented quantities
 - (These quantities are otherwise important for emissions inventories, just not included here)

Scope of Emissions Statistics

- IRES 2.18: data on the production of energy outside energy industries is collected and included in total energy production.
- Result: industrial waste burnt for energy, oil products refined and distributed informally etc should all be included in energy data (and thus in emissions from fuel combustion)
- Emissions data should be on the territory (not residence) principle, just like energy statistics. Important difference for many countries

Importance of energy vs non-energy

- Non-energy use of fuels means that there are no emissions from combustion of these fuels (b/c there is no combustion).
- For most fuels (diesel, fuel oil), industrial deliveries normally a good proxy for consumption (combustion) in an energy balance.
- However: for many other products (naphtha, natural gas, petroleum coke) the energy/non-energy split shouldn't be assumed: further demand-side information is required
- How to estimate this?
 - Gas delivered to iron&steel industry likely combusted, but gas delivered to chemical and petrochemical industry could be both
 - Many products can be assumed to be most/all energy use (eg. gasoline) or non-energy use (e.g. lubricants) if further information is not available.

Example: Senegal

Naphtha

Naphtha	(NP); Metric tons, thousand (WSR)	1999	2000	2001	2002	2003	2004
NP01	Production	0	17	46	37	0	3
NP013	From refineries	0	17	46	37	0	3
NPGA	Total energy supply	0	17	46	37	0	3
NPSD	Statistical differences	0	0	0	0	0	0
NP08	Transformation	0	17	46	37	0	3
NP088	Transformation in electricity plants	0	17	46	37	0	3

- Despite over 95% of naphtha being consumed for non-energy purposes globally, all of Senegal's use is shown in the UN DB as transformation in electricity plants from 2000 to 2004 (which will affect emission calculations).
- Why?
 - Product misclassification?
 - Use/Consumption misclassification?
 - True?

Importance of Domestic /International

 Quantities of fuel used by ships and planes making international voyages are excluded from a country's energy supply under IRES methodology. This then agrees with IPCC emissions inventories

• How to estimate this?

- For flights for **most** countries, the **majority** of jet kerosene will be used for international aviation (exceptions: large countries like the USA, Indonesia, Brazil...)
- The split can be estimated by looking at deliveries to different companies or airports, or from airlines' own route information. (Note Russia estimates a 50/50 split...)
- For shipping, analysis of port of call information (i.e. administrative data) can be used to make similar estimates

Blended biofuels

- Only the fossil component of blended gasoline or diesel should be included in the emissions from fuel combustion
- So either report these products separately as fossil and non-fossil (IEA), or provide memo items on the proportion of the total product that is of bio origin (UNSD)
- Obs: Customs data based on HS not very helpful to determine the bio component, since biodiesel as defined in HS can contain up to 70% of fossil diesel

Follow International Classifications!

- Aligning product definitions with SIEC/IRES means no adjustments necessary to calculate emissions based on IPCC guidelines
 - Why? The product definitions in SIEC agree with IPCC products completely!
- Energy Balances calculated according to IRES principles can also be plugged straight into emission calculations
 - Why? Adjustments for bunkers and non-energy use are built into IRES-compliant energy balances, and are in the right unit; energy stats already follow the territory principle

IPCC methodology CO₂ Emissions

Sector	Sector Energy 2									
Category Fuel combustion activities										
Category Code	1A ^(a)									
Sheet	1 of 4 (CO ₂ , CH ₄ and N ₂ O from fuel combustion by source categories – Tier 1)									
	Er	nergy consump	CO ₂							
	A Consumption (Mass, Volume or Energy unit)	B Conversion Factor ^(b) (TJ/unit)	C Consumption (TJ)	D CO₂ Emission Factor (kg CO₂/TJ)	E CO ₂ Emissions (Gg CO ₂)					
			C=A*B		E=C*D/10 ⁶					
Liquid fuels				-	•					
Crude Oil										
Orimulsion										
Natural Gas Liquids										
Motor Gasoline	10 kt (or Gg)	44.3 TJ/kt	443	73300	32.47					
Aviation Gasoline										
Jet Gasoline										
Jet Kerosene										
Other Kerosene	<u></u>			7						

Importance of specific NCVs

	Coal (kt)	Default NCV	Specific NCVs		Coal (TJ) default NCV	Coal (TJ) specific NCV	coal (1 cO2) (14)	÷ is	CO2 (tons) default NCV	CO2 (tons) specific NCV
2014										
Primary production	131.8	25.8	20.10		3400	2649				
Imports	29.0	25.8	23.20		748	673				
Exports	-12.4	25.8	28.20	X	-319	-349				
Stock changes	-0.5	25.8	20.10	$/ \setminus$	-14	-11	V			
Total energy supply	147.9	-	$_ /$		3,815	2,962	/ \9	4.6	360,899	280,193

• 29% higher CO₂ emission estimates by using default NCVs

http://unstats.un.org/unsd/energy